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Analysis of Quadruped Robot Gaits

in Push-and-Slide Interaction Tasks

Emanuele Cuzzocrea, Michele Avagnale, Pierluigi Arpenti, Fabio Ruggiero

Abstract—This work investigates the optimal configuration for
performing a push-and-slide inspection task with a quadruped
robot, focusing on gait type, base orientation, interaction force,
and sliding velocity. To isolate the effect of motion type while the
robot walks and slides parallel to a wall, a rigid stick is mounted
on its base in place of a robotic arm. A control method combining
classical control techniques and reinforcement learning is used
to enable fair and consistent comparisons across different con-
figurations. A novel gait learning method enforcing a predefined
contact sequence is introduced while automatically optimizing all
timing parameters during training. Extensive simulation trials
are conducted on several morphologically diverse quadruped
robots, followed by a four-way analysis of variance (ANOVA)
to identify statistically significant performance differences across
key metrics. The most effective motion configurations are then
validated on real hardware.

Index Terms—Legged Robots, Field Robots, Reinforcement
Learning.

I. INTRODUCTION

N recent years, quadruped robots have been increasingly

employed in industrial environments for inspection tasks,
replacing humans in hazardous and challenging conditions [1],
[2]. This trend is largely driven by their advanced locomo-
tion capabilities, which allow them to traverse complex and
unstructured terrains with ease [3]-[5]. However, despite this
rapid adoption, current deployments are still predominantly
limited to non-contact sensing (e.g., visual and acoustic), with
minimal or no physical interaction with the environment. In
contrast, a substantial portion of industrial plant inspections re-
quires contact-based Non-Destructive Testing (NDT) [6], i.e.,
a set of techniques used to assess the structural integrity of ma-
terials—such as concrete, metals, and coatings—without caus-
ing damage or requiring material removal. In many practical
scenarios (e.g., thickness assessment and corrosion monitoring
on long pipes, ducts, and large structures), the measurement
quality critically depends on establishing and maintaining a re-
liable probe—surface coupling while traversing extended assets.
Currently, these operations are typically performed manually
by specialized operators or partially assisted by drones [7]—
[9] to reach hazardous or high-altitude locations, yet they still
require careful contact management and are difficult to sustain
over long paths and durations. A quadrupedal robot capable
of autonomously performing contact-based scanning could
therefore significantly enhance automation, repeatability, and
safety in dangerous or hard-to-reach areas, enabling persistent
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Fig. 1. A quadruped robot performing a push-and-slide task using a stick
rigidly attached to its base. The transparent robot indicates the starting pose;
the opaque one indicates the final pose. The dotted arrow denotes the sliding
path of the end-effector on the wall.

inspections over large industrial facilities and long linear
infrastructures.

Compared to wheeled and aerial robots, quadrupeds exhibit
unique locomotion capabilities, such as walking with various
gait patterns. While much of the existing research has focused
on studying gaits in terms of stability and walking energy
efficiency [10]-[12], less attention has been given to how the
choice of gait and base orientation can optimize performance
in loco-manipulation tasks. In this context, many existing
approaches to loco-manipulation rely on the integration of
a robotic arm mounted on the quadruped’s base [13], [14].
While this extends the manipulation capabilities, it also intro-
duces significant complexity in managing the overall system.
Moreover, the addition of a robotic arm partially decouples
locomotion from manipulation. Although such a separation can
be advantageous in certain scenarios [15], it makes it difficult
to determine the most effective leg movement strategies for
executing physical tasks, as the locomotion system primarily
serves to position the manipulator rather than actively con-
tributing to the interaction process [16]. Besides, only a few
market available solutions integrate a quadruped robot with a
robotic arm so far.

By performing a comprehensive statistical analysis, this
work aims to study the optimal motion configuration for a
push-and-slide inspection task using a quadruped robot. A
rigid stick attached to the robot’s base is deployed, as shown
in Fig. 1. This design choice ensures that locomotion directly
influences manipulation capabilities. The key contributions of
this work are: (¢) The identification of the most effective
gait pattern, base orientation, interaction forces, and sliding
velocities for performing a push-and-slide task among the
set of configurations considered, based on a comprehensive
statistical analysis that includes four different robots; and (1)
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Fig. 2. Block diagram of the control approach used in this work, which combines classical control techniques with RL. The force error is transformed into
base velocity commands by a PI controller. The policy receives these commands and, together with proprioceptive observations, outputs desired joint positions.

A novel gait learning approach that enforces a desired gait
by specifying only the foot contact sequence, while timing
parameters are automatically learned during training.

II. RELATED WORK

Several studies in the literature explore the integration of
classical control techniques with RL. In [16], a control frame-
work is proposed for a legged mobile manipulator in which the
legs are controlled via an RL policy, while the robotic arm is
governed by model predictive control (MPC). In [17], a hybrid
control framework that integrates model-based whole-body
control with reinforcement learning is presented. The approach
combines precise torque optimization with learned feedback
corrections, enabling robust and accurate loco-manipulation
tasks. In [18], a hybrid position-force control strategy is intro-
duced for a fixed-base manipulator, where position control is
handled by an RL policy and force control is managed by a PD
controller. In all these works, the model-based and learning-
based components either operate in a decoupled manner or
the RL module serves as a residual correction or additional
feedback. In contrast, the approach proposed in this paper
features a coordinated cooperation between the two methods.
Specifically, the RL policy learns to regulate contact forces
by tracking reference velocities generated by a proportional-
integral (PI) controller acting on real-time force feedback, as
depicted in Fig. 2. Several recent works demonstrate that loco-
manipulation tasks can be successfully executed without the
use of articulated arms. For instance, in [19] quadruped robots
are trained to use the front legs not only to walk, but also to
climb walls, press buttons and move obstacles. In [20], a hier-
archical learning-based framework that enables a quadrupedal
robot to manipulate large and heavy objects directly with
its floating base is proposed. In [21], prongs that are small,
rigid extensions attached underneath the robot’s base, are used.
These allow the robot to stably rest its torso on the ground, en-
abling it to use two legs simultaneously for manipulation tasks.
A learning-based method for a quadrupedal robot to climb
ladders efficiently and reliably is presented in [22], where
its standard point-contact feet are replaced with hooked end-
effectors. Recent advances have demonstrated that RL can be
effectively employed to generate locomotion gaits for legged
robots. In [11], an RL-based gait generator is combined with
a low-level MPC controller to enable autonomous transitions
from a slow crawl to a trot, and eventually to a fly-trot gait as

the reference velocity increases, aiming to enhance locomotion
efficiency. In [23], central pattern generators are integrated
with RL. A novel approach introduced in [12], termed RM-
based locomotion learning, leverages reward machines (RM)
to enable the learning of diverse gaits without relying on
predefined trajectory references. However, these studies do not
consider physical interactions with the environment and do
not provide mechanisms for enforcing specific gait patterns
without manually tuning all timing-related parameters.

The works most closely related to ours are the following.
In [13], an RL controller capable of managing both end-
effector position and contact forces for a legged manipulator
is presented. In [24], the previous work is extended: force
and position control are no longer handled independently,
but a unified policy is proposed that integrates both, thereby
enabling tasks such as push-and-slide. In [25], a control
strategy designed to regulate force interactions directly through
the floating base of a hydraulic legged robot is introduced.
However, these studies do not address key challenges such
as applying constant contact forces against a rigid surface
during locomotion, or studying how gait strategies influence
interaction capabilities—issues that are central to this paper.

III. METHOD

This work aims to statistically identify the most advanta-
geous configurations for performing a push-and-slide inspec-
tion task using a quadruped robot. A rigid stick is mounted in
place of a robotic arm to isolate the oscillations of the floating
base across different configurations. The analysis varies gait
pattern (trot, crawl, pace, bound), base orientation relative to
the wall (frontal, diagonal, lateral), interaction force (0—-60 N),
and sliding velocity (0.0-0.2 m/s). For generalization pur-
poses, four quadruped platforms with different characteristics
are considered: ANYmal-D, ANYmal-B, Unitree Gol, and
Unitree Al. All four robots differ in the size, shape, and weight
of both the base and the legs. Moreover, the ANYmal robots
feature inward-bent knee joints, whereas the Unitree robots ex-
hibit alternating inward—outward knee orientations. Combined
with their different actuation systems, these factors result in
distinct stability, compliance, and interaction dynamics across
platforms.
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TABLE I
DEFINITION OF THE REWARD FUNCTION R (ANYMAL-D)
Description Definition Weight
[ Push-and-Slide Task
Velocity tracking exp(—||’ugl’zy — Up,zy|[2/0.15) 3.0dt
Yaw tracking exp(—||0 — ¢||2/0.15) 2.0dt
Keep wall contact I(f > 0) 0.5dt
[ Penalties |
Vertical velocity lvp, - [1? —2.0dt
Angular velocity lws, 2yl —0.05dt
Flat orientation llg=1l —5.0dt
Joint torques Il —2.5e—5dt
Joint acceleration Iléi; 112 —2.5e—7dt
Action rate lla — ajasel|? —0.01dt
Collisions Ne —1.0dt
Joint deviation l19j.n0m — 45l —1.0dt

A. Observation and Action Space

The observation vector is defined as o = (vy, ¥, W, 9z, ¢j —
Qj.noms Gjs Qlast,w) € R0, where v, € R® and w, € R3
denote the base linear and angular velocities, respectively;
¥ € R is the base yaw expressed in radians; g, € R? is
the projected gravity vector; ¢; € R'? and ¢; € R'? are
joint positions and velocities, respectively; q; nom € R'? are
nominal joint positions; a;s; € R'? is the previous action;
and v € R* is the current RM state, encoded as a one-
hot vector (Section III-C). The desired yaw is always set
to zero, since it is the wall that is rotated across different
configurations—not the robot itself. Additionally, the policy
receives the commanded planar linear velocities, vf € R,
which are computed by the PI controller (Section IIi-D). The
policy action a € R!? represents joint deviations from the
robot’s nominal configuration. Target positions are computed
as q;l = 040 + qjnom, Where o, is a standard scaling factor.
Specifically, o, is set to 0.5 for ANYmal platforms (i.e.,
ANYmal-D and ANYmal-B) and to 0.25 for Unitree platforms
(i.e., Unitree Gol and Unitree Al).

B. Reward Function

The reward function R for ANYmal-D is detailed in
Table I. The first three terms correspond to the push-and-
slide task, while the remaining penalties encourage safety and
smoothness. The rewards are multiplied by dt to make the
training independent of the simulation time step. To ensure
the generality of the results, the first three terms were used
unchanged for the other three robots. As for the penalties, all
four robots employed the default terms and weights provided
by Isaac Lab (with the exception of the joint deviation penalty
which was added equally for all robots with the same weight).
This setup minimizes sensitivity to hyperparameters: not only
are four different robots tested, but each also operates with
slightly different rewards. Using RL, the task can thus be
encoded with only a few high-level parameters, allowing the
policy to learn autonomously without being biased towards
a specific gait, base orientation, or even the particular robotic
platform being used. Notably, no explicit force-tracking term is
included, e.g., exp(—|| f®— f||?/k) [13], where f € R denotes
the actual force, f¢ € R the desired force, and k € R is a
scalar gain. While such a term could potentially improve task

Stanl

m
R-?)AQ [ ] [ ]

OQ R-b,

if P # qo, thenb =1 @ q() ql [} ® ifP +#q,thenb=1
b=15 b=15
[ [ q q [
[ ] [ ] [ ]
R-b ( —; — A\— ) R-b,
if P # g3, thenb =1 b=15 it P # qo,thenb =1

Fig. 3. Finite state automaton for the trot gait. In each state, black circles
represent stance feet and white ones swing feet. The cycle has four states,
including two intermediate ones (g1 and ¢3) where all feet contact the ground
to help re-establish balance and reduce angular oscillations. The same strategy
is applied to pace and bound gaits, resulting in all chosen gaits having
four states for a fair comparison. The selected gaits capture all the main
oscillation patterns that a quadruped robot can exhibit during locomotion:
diagonal oscillations for the trot, lateral ones for the pace, frontal for the
bound, and single-leg movements for the crawl.

performance, it makes valid comparisons across configurations
very difficult, compromising statistical analysis. This occurs
because the force and velocity rewards tend to compete
strongly, and each training session fails to balance them evenly
according to the reward weights (one often dominates the
other in an unpredictable manner). A better approach is to
regulate force indirectly through velocity control. Although
this slightly reduces task performance, it allows for a single
tracking reward (velocity) while managing forces via a PI
controller. This setup is far better suited to assessing how
different gaits influence force and velocity tracking, which
constitutes the main objective of this paper.

C. Gait Learning

One of the main objectives of this work is to evaluate
different gait patterns and identify the one that yields the
best performance. To this end, predefined contact sequences
are assumed, focusing on enforcing them effectively without
requiring manual specification of timing-related parameters,
such as gait cycle and phase durations. To address this chal-
lenge, a modified version of RM-based locomotion learning is
proposed, inspired by [12]. In Fig. 3, the finite-state automaton
used to enforce the trot gait is shown, while the automata
used for crawl, pace, and bound are provided in the attached
video. The variable P = {Prr, Prr, Ppr, Per} € R* is
defined as a boolean vector indicating whether the front-left
(FL), front-right (FR), back-left (BL), and back-right (BR) feet
are in contact with the ground. Let u € R* be the current
RM state, represented as a one-hot vector, and ¢; € R* be
the desired foot contact configuration for the ¢-th state (e.g.,
g =[1 0 0 1]7), indicating that the FL and BR feet
must be in contact. Different from [12], reward amplification is
not applied during state transitions. Instead, it is applied during
the preservation of a desired contact configuration associated
with each state. Specifically, whenever the robot enters a new
RM state, the amplification variable b is set to 1.5. If the
robot keeps the required foot contact configuration (i.e., if
P = g;), the overall reward is multiplied by this factor.
However, if the robot loses the desired configuration even for
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Fig. 4. Visual representation of the wall-aligned and robot-aligned reference
frames for ANYmal-D, showing the angle 6 between them, and the stick
lengths for the frontal, diagonal, and lateral configurations.

a single time-step, b is immediately reset to 1. This strategy
effectively forces the robot to chase the reward amplification
by continuously progressing through the finite-state automaton
and removes the need to predefine a fixed transition frequency
between states. Also, a deliberately lower value of b than that
used in [12] was employed, since the amplification does not
occur sparsely during the transition from one state to another,
but rather continuously. To the best of our knowledge, this is
the first strategy that enables enforcing an arbitrary gait in RL
training without requiring predefined timing parameters.

D. Hybrid Force-Velocity Control

The actual force control is handled by a simple PI controller,
which computes the desired velocity towards the wall, required
to apply the target force. As discussed in Section III-B,
this approach was preferred over learning force tracking
directly through the reward function. To define reference
base velocities consistently, a wall-aligned reference frame
Fw : {Ow,zw,yw} and a robot-aligned reference frame
Fp : {Op,xp,yp} are defined, both planar and parallel to
the ground, as illustrated in Fig. 4. The angle between these
two frames is denoted by 6§ € R. Specifically, § = 0° corre-
sponds to the frontal configuration, 6 = 45° to the diagonal
configuration, and 6 = 90° to the lateral configuration. Then,
two velocities are defined, both expressed in Fyy: the sliding
velocity vs € R, which represents the velocity the robot should
keep parallel to the wall, and the pushing velocity v, € R,
which is the output of the PI controller and is defined as
T

(fd_f)dta

where P and I are the proportional and integral gains, re-
spectively. To express these velocities in .#p as desired base
velocities vg’zy, a proper rotation matrix depending on 6 is
applied.

vp=P<fd—f)+I/ (1)

0

E. Curriculum Learning

By leveraging the massive parallelization capabilities of
the Isaac Lab framework [26], 4096 robots were trained
simultaneously. To maximize performance, a two-phase train-
ing approach was adopted. In the first phase, lasting 1000
iterations, half of the robots are trained solely to walk in
random directions at varying speeds, while the other half

interacts with the wall by performing the push-and-slide task.
After 1000 iterations, the second phase begins, during which
all robots are trained to interact for another 500 iterations. This
strategy proved particularly beneficial, as it first trains a fairly
general neural network, followed by a specialization phase to
maximize the target task.

F. Training Details

For robots required to walk during the first phase of training,
a velocity is randomly sampled every 2 seconds within the
range [—0.5,0.5] m/s for both vg’m and vg’y. For robots
required to interact with the environment, a wall is spawned
perpendicular to the stick and positioned 0.15 m from its tip.
As shown in Fig. 4, the stick extends the same length beyond
the robot’s base in all three orientations (280 mm for ANYmal-
D, 240 mm for ANYmal-B, 195 mm for Unitree Gol, and 150
mm for Unitree Al). These lengths were chosen proportionally
to the robot dimensions and also ensure a safe distance from
the wall. The wall has a width of 10 m, a depth of 0.5 m,
and a height of 1 m. It is not perfectly rigid, but is modeled
with a stiffness coefficient of 5 x 10° N/m to improve contact
stability between the stick and the wall. The sliding velocity
vy is randomly sampled in the range [—0.2,0.2] m/s, while
the desired force is randomly chosen in the range [0,60] N
for ANYmal robots and [0,30] N for Unitree robots (which
are lighter).

Each episode has a maximum duration of 20 s but is
terminated early if the robot’s thighs come into contact with
the environment (indicating a fall) or if a self-collision occurs.
The low-level control runs at 400 Hz, while the policy is
executed at 50 Hz. Each policy was trained for 1500 iterations.
During training, the network is updated every 24 policy steps
per environment, resulting in a batch size of 98304 due to
parallelization. Proximal Policy Optimization (PPO) [27] is
exploited as the learning algorithm, using the hyperparameters
from [28]. Both the actor and critic are modeled as three-layer
multilayer perceptrons (MLPs) with 128 hidden units per layer
and exponential linear units (ELUs) as activation functions.
Simulations were conducted on an Intel 19-14900HX CPU
with an NVIDIA RTX 4090 GPU, with each policy requiring
approximately 30 minutes of training time.

IV. RESULTS AND DISCUSSION
A. Simulation Results and Statistical Analysis

A total of 48 training runs were performed (12 for each of
the four robots), as all force and sliding velocity values can be
addressed within a single training. For the statistical analysis,
three different force values were selected (10 N, 35 N, and
60 N for ANYmal robots, and 10 N, 20 N, and 30 N for
Unitree robots), along with three sliding velocities (0.05 m/s,
0.1 m/s, and 0.2 m/s). To test all possible combinations of
these parameters, a total of 432 different tests were carried out
(108 per robot). Static and dynamic friction coefficients of the
wall were set to 0.5. A PI controller with gains P =1 x 107
and I = 5 x 107% was used in all simulations. These low
gains ensure a constant pushing velocity v, towards the wall
in the absence of disturbances. Choosing even lower gains
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Fig. 5. Performance evaluation results for the ANYmal-D robot. Top: average
force tracking error £5; Middle: average velocity tracking error &£,; Bottom:
average power consumption P. Statistically significant differences between
levels (p < 0.05) are indicated.

does not affect performance but simply increases the transient
time. Tuning the gains to maximize performance for a specific
configuration would have made comparisons across different
configurations meaningless.

1) Statistical Analysis: Three metrics were considered to
evaluate control performance. The first metric is the mean
absolute error (MAE) between the desired force and the
actual force, which quantifies the average force tracking error
& = T%toftf | f¢ — f|ldt; the second metric accounts
for the average tracking error of the sliding velocity &, =
T%to ftf |lus — s || dt; while the third metric concerns the aver-
age power consumption, computed as P = o ftf | 7-q;]| dt.
Metrics were computed over a fixed 10 s window, from
to = 10 s to T = 20 s, to isolate steady-state perfor-
mance. The first 10 s, during which the robot approaches
and establishes contact with the wall, were excluded from
the analysis. A four-way ANOVA with a significance level
of a = 0.05 was performed. Assumptions of independence,
normality (Kolmogorov—Smirnov test), and homogeneity of
variances (Levene’s test) were satisfied. Fig. 5 shows the mean
and standard deviation of the three metrics across all factor
levels for the ANYmal-D robot, with p-values reported for
statistically significant pairwise comparisons. The plots for the
other three robots are provided in the attached video.

For &g, values remain low for trot and crawl, worsen
for bound, and stay good for pace on ANYmal but not
Unitree robots. The metric is stable across stick orientations
and increases with higher desired forces. Regarding sliding
velocity, performance degrades at 0.2 m/s, while differences
between 0.05 m/s and 0.1 m/s are not always statistically
significant, although mean errors at 0.05 m/s are never lower
than 0.1 m/s. For &,, the crawl exhibits a significantly lower

Sensor case

..

Force sensor

Rigid cylinder

End-effector

Fig. 6. The tool used to perform the push-and-slide experiments.

standard deviation, while the trot performs very well in some
cases but poorly in others. Regarding the pace and bound,
they tend to fail on &, whenever they perform well on &y,
and vice versa, indicating that these gaits are unsuitable for
the push-and-slide task. No significant difference is found for
stick orientation, while higher interaction forces and sliding
speeds degrade performance. For P, results mainly depend
on gait, with trot the most efficient and bound the least. The
frontal configuration is the most efficient for all robots, and
power consumption slightly increases with force and speed.
In conclusion, despite minor differences among robots, overall
rankings remain stable and results fully consistent.

2) Learned Gait Timing Analysis: For all trainings, the
learned full gait cycles are relatively short, ranging from 0.18 s
to 0.28 s. Having a sufficiently fast gait cycle is indeed the
most effective way to accomplish the task, as will be further
discussed in Sec. IV-C2. All learned trot gaits consistently
spend more time in two-leg support (gg, g2) than in four-leg
support (q1, gs), reflecting their natural balance on diagonal
limbs. The crawl gaits are evenly divided across all four
phases, as only one foot is lifted at a time. In contrast, the
bound gaits spend more time in four-leg support than in two-
leg support, struggling to keep balance on two legs. Finally,
the timing of the pace gait is similar to that of the crawl gait
in the frontal and diagonal configurations, while in the lateral
configuration, it more closely matches the bound gait, which is
inherently more challenging because of its lateral oscillations.
If a fixed frequency had been assigned for all gaits, the results
would not have allowed for a valid and balanced comparison.

B. Experimental Setup, Sim-to-Real Transfer, and Results

The policies described in Sec. III were deployed on the
available ANYmal-D robot. To facilitate sim-to-real transfer,
static and dynamic friction of the robot, ground, and wall were
randomized within the range [0.5,1.25]. Additionally, slight
modifications were made to the robot’s base mass from the
interval [—5, 5] kg, and external forces were applied to the base
in the range [—10, 10] N. Observation noise is also added [28].
The real robot was equipped with a simple yet effective
custom-designed tool for push-and-slide testing, shown in
Fig. 6. The tool consists of an aluminium tube rigidly attached
to the robot’s base via a 3D-printed mount. A DYMH-106
force sensor was embedded inside the tube to provide force
feedback during pushing. The control algorithm runs at 50 Hz
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directly on the locomotion PC, which is equipped with an Intel
17 Core processor. The force sensor is appropriately integrated
into the control loop, interfacing with an Arduino UNO R4
WiFi at 80 Hz. The same PI gains as in simulation were used.
A standard concrete wall was considered for pushing (Fig. 1).

Experiments were carried out to validate the simulation
results and statistical analysis. The most promising configu-
rations from Sec. IV-A (i.e., frontal stick, trot and crawl gaits)
were considered.

1) Trot and Crawl Comparison: Fig. 7 shows the experi-
mental performance of the trot and crawl gaits with a frontal
stick across all three metrics, considering v; = 0.1 m/s and
several values of f¢. Regarding & and &,, it is particularly
interesting to note that the trot performs better at low forces,
while the crawl becomes more effective at higher forces. The
trot proves capable of more delicate interactions at low contact
forces, whereas the crawl benefits from its inherently stable
three-leg support when larger forces are required. This trend
is consistent with the statistical analyses, where the crawl
exhibited lower standard deviations than the trot for both
Er and &,. Concerning P, the crawl consistently consumed
more power than the trot, although this difference gradually
decreases as f? increases. Figure 8 shows examples of the
time evolution of the measured interaction force.

2) Sliding Velocity Comparison: Real-world experiments
were also conducted at different sliding velocities. While
degraded performance is expected at excessively high speeds
(e.g., vs = 0.2 m/s), the relationship between vs; = 0.05 m/s
and vs = 0.1 m/s is particularly insightful. Considering
f¢ = 10 N to ensure a well-conditioned task and a frontal
configuration, the trot achieved £y = 1.07 N, &, = 0.017 m/s,
and P = 15.56 W at vy = 0.05 m/s, compared to £ = 1.00 N,
&, = 0.038 m/s, and P = 20.4 W at vy, = 0.1 m/s. For the
crawl, & = 1.76 N, &, = 0.049 m/s, and P = 34.6 W
were obtained at vy = 0.05 m/s, while & = 1.70 N,
&, = 0.053 m/s, and P = 36.1 W at v, = 0.1 m/s. Overall,
using a lower sliding velocity improved £, and P but not
&. Slower motion makes it harder to overcome static friction,
slightly worsening force-tracking performance compared to a

50
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Time (s
Fig. 8. Interaction force magnitude between the tool and the wall in the

experiment. Blue is the trot gait, red is the crawl gait. Top: comparison with
a force reference of 10 N. Bottom: comparison with a 20 N reference. Since
the desired force is low, the trot exhibits better performance than the crawl, as
the high-frequency oscillations induced by locomotion are more pronounced
in the crawl gait than in the trot.

moderate but not excessive velocity such as vs = 0.1 m/s.

C. Ablation Study and Discussion

An ablation study was conducted on key design choices
to determine whether, and to what extent, they improve
training effectiveness and the robot’s task performance. The
results reported here were obtained in simulation using the
ANYmal-D robot, a trot gait, and a frontal configuration as a
representative example. For brevity, only the metrics £; and
&, are considered.

1) Contact Reward Ablation: Performance was compared
with and without the contact-preservation reward to enable
a fair comparison with a similar policy designed solely for
locomotion. For &, using the reward yields 3.43 N, 5.42 N,
and 8.00 N for fd = 10 N, 35 N, and 60 N, respectively.
Without the reward, the values are 5.93 N, 12.03 N, and
18.65 N. It is clear that, without the reward, the robot does not
learn to exploit the wall effectively, which instead acts only
as an external disturbance.

2) Gait Learning Ablation: Learning the trot gait resulted
in a complete cycle of 0.22 s, with 63.63 % of the time
in two-leg support (gg, g2) and 36.36 % in four-leg support
(q1, g3)- The following analysis compares performance across
different contact timing strategies. Specifically, the learned
timing is evaluated against cases where all four phases of the
trot cycle are fixed to 0.04 s, 0.06 s, 0.08 s, 0.10 s, 0.12 s,
and 0.14 s. To enforce a fixed frequency, the method from
[12] is used, amplifying the reward during phase transitions
rather than during state preservation. Fig. 9 reports the ob-
tained results. For both metrics, performance is superior when
timing is learned autonomously. For £¢, excessively fast gaits
(e.g., 0.04 s) generate excessive oscillations, leading to poor
performance. Instead, for &,, overly slow cycles (e.g., 0.14 s)
prevent accurate velocity tracking. Finally, when no gait is
imposed, all robots naturally learn the trot, already included
in the statistical analysis.

3) Curriculum Learning Ablation: Two alternative struc-
tures are now tested: (¢) maintaining the split throughout
training (removing the second phase of the training), and (i)
training all robots to interact from the start (removing the
first phase). For £y, the results were 3.43 N (curriculum),
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Fig. 9. Force tracking error £ (left) and velocity tracking error &£, (right)
for the ANYmal-D robot using a trot gait, frontal stick, and f¢ = 10 N in
simulation, comparing learned gait timing with fixed gait timing.

10.51 N (first alternative), and 5.44 N (second alternative). For
&,, the values were 0.0208 m/s, 0.0385 m/s, and 0.0245 m/s,
respectively. The curriculum-based approach achieved the best
performance in both metrics. The first alternative performed
worst, highlighting the importance of the specialization phase
for stable and controlled wall interaction, while the second
suffered from limited generalization, leading to poorer distur-
bance rejection and less coordinated motion.

V. CONCLUSION

The objective of this work was to identify the most ad-
vantageous configurations for a push-and-slide task performed
by a quadruped robot. A four-way ANOVA revealed that
bound and pace gaits are unsuitable for this task, while the
trot gait exhibited the best performance at low force levels,
and the crawl gait provided high consistency and stability.
Since NDT inspections typically do not require excessive
contact forces, the trot gait, combined with a frontal base
orientation (for efficiency) and a moderate sliding velocity
(to better manage stick—slip behavior), proved to be the most
effective configuration. The hybrid control strategy, integrating
classical control and RL, enabled consistent comparisons, and
the proposed gait timing learning method was successful.
Future work could address training new policies on uneven
terrain and explore a fully RL-based approach to directly
control force and reduce oscillations.
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